An international team of interdisciplinary researchers has identified mathematical metrics to characterize the fragility of financial markets. Their paper “Network geometry and market instability” sheds light on the higher-order architecture of financial systems and allows analysts to identify systemic risks like market bubbles or crashes.
With the recent rush of small investors into so-called ‘meme stocks’ and reemerging interest in cryptocurrencies, talk of market instability, rising volatility, and bursting bubbles is surging. However, “traditional economic theories cannot foresee events like the US subprime mortgage collapse of 2007” according to study author Areejit Samal. He and his colleagues from more than ten mathematics, physics, economics, and complex systems focused institutions around the globe have made a great stride in characterizing stock market instability.
Their paper abstracts the complexity of the financial market into a network of stocks and employs geometry-inspired network measures to gauge market fragility and financial dynamics. They analyzed and contrasted the stock market networks for the USA S&P500 and the Japanese Nikkei-225 indices for a 32-year period (1985-2016) and for the first time were able to show that several discrete Ricci curvatures are excellent indicators of market instabilities. The work was recently published in the Royal Society Open Science journal and allows analysts to distinguish between ‘business-as-usual’ periods and times of fragility like bubbles or market crashes.
The network created by connecting stocks with highly correlated prices and trading volumes forms the structural basis of their work. The researchers then employ four discrete curvatures, developed by the director of Max Planck Institute for Mathematics in the Sciences Jürgen Jost and his coworkers, to study the changes in the structure of stock market networks over time. Their comparisons to other market stability metrics have shown that their four notions of curvature serve as generic indicators of market instability.
One curvature candidate, the Forman-Ricci curvature (FRE), has a particularly high correlation with traditional financial indicators and can accurately capture market fear (volatility) and fragility (risk). Their study confirms that in normal trading periods the market is very fragmented, whereas in times of bubbles and impending market crashes correlations between stocks become more uniform and highly interconnected. The FRE is sensitive to both sector-driven and global market fluctuations and whereas common indicators like the returns remain inconspicuous, network curvatures expose these dynamics and reach extreme values during a bubble. Thus, the FRE can capture the interdependencies within and between sectors that facilitate the spreading of perturbations and increase the danger of market crashes.
Max Planck Institute for Mathematics in the Sciences director Jürgen Jost summarizes the struggle of analyzing market fragility: “there are no easy definitions of a market crash or bubble and merely monitoring established market indices or log-returns does not suffice, but our methodology offers a powerful tool for continuously scanning market risk and thus the health of the financial system.” The insights gained by this study can help decision-makers to better understand systemic risk and identify tipping points, which can potentially forecast coming financial crises or possibly even avoid them altogether.
More information: Areejit Samal et al, Network geometry and market instability, Royal Society Open Science (2021). DOI: 10.1098/rsos.201734
Journal information: Royal Society Open Science
Provided by Max Planck Society
More information: Areejit Samal et al, Network geometry and market instability, Royal Society Open Science (2021). DOI: 10.1098/rsos.201734
Journal information: Royal Society Open Science
Journal information: Royal Society Open Science
Provided by Max Planck Society
Explore further
Facebook
Twitter
Email
Feedback to editors
19 hours ago
1
20 hours ago
1
Sep 11, 2023
1
Sep 11, 2023
0
Sep 11, 2023
0
3 hours ago
9 hours ago
10 hours ago
13 hours ago
13 hours ago
13 hours ago
13 hours ago
13 hours ago
13 hours ago
14 hours ago
Mar 17, 2021
Feb 11, 2021
Aug 1, 2018
Jul 10, 2018
Nov 12, 2020
Aug 16, 2017
Sep 7, 2023
Sep 7, 2023
Sep 7, 2023
Sep 5, 2023
Sep 5, 2023
Sep 4, 2023
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we’ll never share your details to third parties.
More information Privacy policy
We keep our content available to everyone. Consider supporting Science X’s mission by getting a premium account.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.